O.P.Code: 19ME0305

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B Tech II Year II Semeste Supplementary Examinations May/June-2024 ENGINEERING THERMODYNAMICS

		(Mechanical Engineering)			
Ti	me	: 3 Hours	Max.	Marl	ks: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-I			
1	a	Describe thermodynamic control volume.	CO1	L1	6M
		Define Heat, Temperature and concept of thermal Equilibrium.	CO ₁	L2	6M
		OR			V1.2
2	a	Classify the differences between heat and work transfers.	CO1	L4	6M
	b	~4 4 4	CO1	L2	6M
		UNIT-II			01.1
3	a	What are the limitations of the First law of Thermodynamics?	CO1	L1	6M
	b	Gives an expression for entropy changes for open systems.	CO2	L3	6M
		OR		20	01/1
4	a	Define Statements of second law of thermodynamics			6M
		i) Clausius statement ii) Kelvin-plank statement.	CO ₂	L1	02.12
	b	Explain reversibility and irreversibility. List examples	CO ₂	L2	6M
		UNIT-III			
5	a	Derive the equation for work done in a reversible adiabatic process.	CO ₃	L1	6M
		How the partial pressure in gas mixture related to mole fraction?	CO3	L4	6M
		OR			01.1
6	a	What is a polytropic process? Write the work done formula.	CO ₃	L1	6M
	b	90 kJ of heat are supplied to a system at a constant volume. The system			
		rejects 95 kJ of heat at constant pressure and 18 kJ of work is done on it.			
		The system is brought to original state by adiabatic process. Determine:	CO ₃	L5	6M
		(i) The adiabatic work; (ii) The values of internal energy at all end			
		states if initial value is 105 kJ.			127
		UNIT-IV			
7	a	Find the saturation temperature change in specific volume and entropy	CO ₄	L1	6M
		during evaporation and latent heat of vaporization of steam at 1Mpa			
	_	380°C			
	b	Recall a short note on dryness fraction.	CO ₄	L1	6M
		OR			
8	a	Differentiate between Otto cycle, diesel cycle.	CO4	L2	6M
	D	Show the enthalpy, entropy and volume of steam at 1.4 MPa.	CO4	L2	6 M
•		UNIT-V			
9	Ex	plain the Rankine cycle with PV and TS diagrams.	CO ₅	L2	12M
10	т.	OR			
10	LIS	st the advantages and disadvantages of Regenerative cycle over Simple	CO ₅	L1	12M
	Ka	nkine cycle.			